• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Lehrstuhl für Autonome Systeme und Mechatronik ASM
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Elektrotechnik-Elektronik-Informationstechnik
Suche öffnen
  • Deutsch
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Elektrotechnik-Elektronik-Informationstechnik
Friedrich-Alexander-Universität Lehrstuhl für Autonome Systeme und Mechatronik ASM
Navigation Navigation close
  • Chair
    • People
      • Open Positions
    • Contact
    Portal People
  • Research
    • Interfaces and Interaction
    • Human-Machine-Centered Design Methods
    • Components and Control
    • Biomechanical Motion Analysis and Creation
    Portal Research
  • Teaching
    • Winter Semester
    • Summer Semester
    • Student Theses and Projects
    Portal Teaching
  • News
  1. Home
  2. Chair of Autonomous Systems and Mechatronics
  3. Research
  4. Biomechanical Motion Analysis and Creation
  5. Machine Learning for Personalisation of Biomechanical Movement Simulations (C01)

Machine Learning for Personalisation of Biomechanical Movement Simulations (C01)

In page navigation: Chair of Autonomous Systems and Mechatronics
  • Research
    • Components and Control
    • Interfaces and Interaction
    • Human-Machine-Centered Design Methods
    • Biomechanical Motion Analysis and Creation
      • Applications of Biomechanical Simulations
      • Biomechanical Assessment of Big Wave Surfing
      • Bridging the gap in ACL injury prevention with FAME: Field-based Athlete Motion Evaluation and simulation (FAME)
      • Digital Twin of the Musculoskeletal System
      • Fundamentals of Biomechanical Simulations
      • Individual Performance Prediction Using Musculoskeletal Modeling
      • Machine Learning for Personalisation of Biomechanical Movement Simulations (C01)
      • Personalization of Muscoskeletal Models
      • Videos

Machine Learning for Personalisation of Biomechanical Movement Simulations (C01)


Acronym: SFB 1483 EmpkinS C01
Project leader: Anne Koelewijn
Project members: Eva Dorschky, Markus Gambietz, Marlies Nitschke
Start date: 1. July 2021
End date: 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)

 

Abstract

The extent to which a neural network can be used to effectively personalise gait simulations using motion data is explored. We first investigate the influence of body parameters on gait simulation. An initial version of the personalisation is trained with simulated motion data, since ground truth data is known for this purpose. We then explore gradient-free methods to fit the network for experimental motion data. The resulting network is validated with magnetic resonance imaging, electromyography and intra-body variables.

Display external content

At this point content of an external provider (source: YouTube) is integrated. When displaying, data may be transferred to third parties or cookies may be stored, therefore your consent is required.

You can find more information and the possibility to revoke your consent in our privacy policy.

I agree

Students

ID 2340: Approximate Inverse Optimal Control via Annealing and Warmstarts

https://www.mad.tf.fau.de/2023/03/23/id-2320/

We could not find any entry with the given search term 15455. We could not find any entry with the given search term 17968.

We could not find any entry with the given search term 15322.
We could not find any entry with the given search term 11197.
We could not find any entry with the given search term 11260.
We could not find any entry with the given search term 14049.

Publications

  • Gambietz M., Nitschke M., Miehling J., Koelewijn A.:
    Contributing Components of Metabolic Energy Models to Metabolic Cost Estimations in Gait
    In: IEEE Transactions on Biomedical Engineering (2023), p. 1-9
    ISSN: 0018-9294
    DOI: 10.1109/TBME.2023.3331271
  • Nitschke M., Marzilger R., Leyendecker S., Eskofier B., Koelewijn A.:
    Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data
    In: PeerJ (2023)
    ISSN: 2167-8359
    DOI: 10.7717/peerj.14852
    URL: https://peerj.com/articles/14852/
  • Nitschke M., Marzilger R., Koelewijn A.:
    3D full-body optimal control simulations with change of direction directly driven by motion capture data
    17th International Symposium of 3-D Analysis of Human Movement (3D-AHM) (Tokyo, Japan, 16. July 2022 - 19. July 2022)
    URL: https://www.youtube.com/watch?v=3ZFwDhZqZPU
  • Gambietz M., Nitschke M., Miehling J., Koelewijn A.:
    What should a metabolic energy model look like? Sensitivity of metabolic energy model parameters during gait
    9th World Congress of Biomechanics 2022 Taipei (Taipei, 10. July 2022 - 14. July 2022)
Lehrstuhl für Autonome Systeme und Mechatronik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Paul-Gordan-Strasse 3/5
91052 Erlangen
  • Legal notice
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • RSS Feed
  • Twitter
  • Twitter
  • Xing
  • Xing
  • Facebook
Up