• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Lehrstuhl für Autonome Systeme und Mechatronik ASM
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Elektrotechnik-Elektronik-Informationstechnik
Suche öffnen
  • Deutsch
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Elektrotechnik-Elektronik-Informationstechnik
Friedrich-Alexander-Universität Lehrstuhl für Autonome Systeme und Mechatronik ASM
Navigation Navigation close
  • Chair
    • People
      • Open Positions
    • Contact
    Portal People
  • Research
    • Interfaces and Interaction
    • Human-Machine-Centered Design Methods
    • Components and Control
    • Biomechanical Motion Analysis and Creation
    Portal Research
  • Teaching
    • Winter Semester
    • Summer Semester
    • Student Theses and Projects
    Portal Teaching
  • News
  1. Home
  2. Chair of Autonomous Systems and Mechatronics
  3. Research
  4. Biomechanical Motion Analysis and Creation
  5. Digital Twin of the Musculoskeletal System

Digital Twin of the Musculoskeletal System

In page navigation: Chair of Autonomous Systems and Mechatronics
  • Research
    • Components and Control
    • Interfaces and Interaction
    • Human-Machine-Centered Design Methods
    • Biomechanical Motion Analysis and Creation
      • Applications of Biomechanical Simulations
      • Biomechanical Assessment of Big Wave Surfing
      • Bridging the gap in ACL injury prevention with FAME: Field-based Athlete Motion Evaluation and simulation (FAME)
      • Digital Twin of the Musculoskeletal System
      • Fundamentals of Biomechanical Simulations
      • Individual Performance Prediction Using Musculoskeletal Modeling
      • Machine Learning for Personalisation of Biomechanical Movement Simulations (C01)
      • Personalization of Muscoskeletal Models
      • Videos

Digital Twin of the Musculoskeletal System

Project leader: Anne Koelewijn
Project members:
Start date: 1. September 2021
End date: 31. August 2024
Funding source: Siemens Healthcare GmbH

Abstract

Musculoskeletal (MSK) models represent the dynamics of the human body and can output many different variables i.e. joint angles, joint moments and muscle force. Personalised movement predictions provide accurate outcome variables than a generic prediction. Therefore, we would like to develop a digital twin of the MSK system, which can then be used for personalised movement predictions. Image-based personalisation is the state-of-the-art. Anthropometric variables, such as bone geometry and muscle attachment points can be derived from magnetic resonance imaging (MRI). Muscle parameters require diffusion tensor imaging (DTI) to visualise the alignment of fibres, which is important for the derivation of the muscle size as well as the fibre length. The goal of this project is to develop a personalised digital twin of the MSK system using DTI measurements, and investigate if such a digital twin can improve accuracy of movement predictions.  The aim is to also investigate to what extent image processing can be automated. Furthermore, identification of groups using the personalised models, e.g. to detect MSK diseases, such as rheumatoid arthritis will be investigated. 

Lehrstuhl für Autonome Systeme und Mechatronik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Paul-Gordan-Strasse 3/5
91052 Erlangen
  • Legal notice
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • RSS Feed
  • Twitter
  • Twitter
  • Xing
  • Xing
  • Facebook
Up