• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Lehrstuhl für Autonome Systeme und Mechatronik ASM
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Elektrotechnik-Elektronik-Informationstechnik
Suche öffnen
  • Deutsch
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Elektrotechnik-Elektronik-Informationstechnik
Friedrich-Alexander-Universität Lehrstuhl für Autonome Systeme und Mechatronik ASM
Navigation Navigation close
  • Chair
    • People
      • Open Positions
    • Contact
    Portal People
  • Research
    • Interfaces and Interaction
    • Human-Machine-Centered Design Methods
    • Components and Control
    • Biomechanical Motion Analysis and Creation
    Portal Research
  • Teaching
    • Winter Semester
    • Summer Semester
    • Student Theses and Projects
    Portal Teaching
  • News
  1. Home
  2. Chair of Autonomous Systems and Mechatronics
  3. Research
  4. Components and Control

Components and Control

In page navigation: Chair of Autonomous Systems and Mechatronics
  • Research
    • Components and Control
    • Interfaces and Interaction
    • Human-Machine-Centered Design Methods
    • Biomechanical Motion Analysis and Creation

Components and Control

Current designs of autonomous and mechatronic systems are no longer based solely on rigid mechanisms but contain specific elastic properties. Through this, safe human-machine and human-robot interaction and significantly reduced energy consumption by exploiting system dynamics are achieved. Both aspects help to meet the requirements of systems operating close to humans, but also raise new technical questions. In addition to increasing system complexity, this particularly relates to the requirements arising from direct interaction between humans and machines.

Our recent research focuses on the design of components, e.g., elastic actuators, aiming at energy efficiency and fault tolerance. In addition to developing mechanisms and actuators, we also tackle control and signal processing challenges. These play an important role in the implementation of fault-tolerant designs with safety management and thus support the practical applicability of elastic actuators. By considering human perception, components and control are designed to ensure intuitive and robust human-machine interaction.

 

Current Projects

Learning Predictive Maintenance of Fleets of Networked Systems

Funded by the Bayerische Forschungsstiftung AZ-1586-23

The project aims at advancing predictive maintenance for networked device fleets using learning approaches and integrating expert knowledge. To this end, we will combine machine learning with physical models and analyze and evaluate data flows between systems as well as integrate expertise on system behavior and failure modes. The resulting predictive maintenance approach for networked systems will be transferred to various classes of systems. Besides investigating industrial applications, we will create a fleet of mobile robots to demonstrate the capabilities of the predictive maintenance approach and make it available to academia, industry, and beyond.

Fault diagnosis and tolerance for elastic actuation systems in robotics: physical human-robot interaction

Funded by the DFG: BE 5729/1

Increased system complexity and operation in potentially critical operating states such as (anti)resonances can result in technical faults in elastic robotic actuators. To counteract this, we are examining fault diagnosis methods and fault-tolerant designs. One of our key interests is human-robot interaction, which can be influenced by suitable control algorithms for elastically actuated robots. Based on investigating human perception, we design elastic actuators to provide safe and reliable physical human-robot interaction through fault diagnosis and compensation.

  • Beckerle, P. (2016). Practical relevance of faults, diagnosis methods, and tolerance measures in elastically actuated robots. Control Engineering Practice, 50, 95-100.
  • Velasco-Guillen, R. J., Furnémont, R., Verstraten, T., & Beckerle, P. (2022, July). A Stiffness-Fault-Tolerant Control Strategy for a Redundant Elastic Actuator. In 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1360-1365). IEEE.

Completed Projects

Human-oriented methods for intuitive and fault-tolerant control of wearable robotic devices

Supported by the “Athene Young Investigator” program of TU Darmstadt

In this project, control approaches for wearable robotics systems for movement support and augmentation were developed to provide efficient and natural support and prevent users from feeling “controlled by the robot”. Psychophysical experiments of how users experience device elasticity help to tune adaptive impedance control to ensure versatile locomotion and fault tolerance. Human-in-the-loop experiments were applied to investigate the body scheme integration of wearable robotics systems by their users.

  • Stuhlenmiller, F., Schuy, J., & Beckerle, P. (2018). Probabilistic elastic element design for robust natural dynamics of structure-controlled variable stiffness actuators. Journal of Mechanisms and Robotics, 10(1), 011009.
  • Stuhlenmiller, F., Perner, G., Rinderknecht, S., & Beckerle, P. (2019). A stiffness-fault-tolerant control strategy for reliable physical human-robot interaction. In Human Friendly Robotics: 10th International Workshop (pp. 3-14). Springer International Publishing.

Natural dynamics analysis and stiffness control of series- and parallel-elastic robotic actuators

Funded by the DFG: BE 5729/2

In cooperation with Vrije Universiteit Brussel, we investigated the influence of actuator-elasticity configurations on the inherent dynamics of elastic actuators and their power/energy requirements. For this purpose, rigid, series, and parallel elastic configurations were compared in simulations and experiments. The results inform actuator design and stiffness control.

  • Verstraten, T., Beckerle, P., Furnémont, R., Mathijssen, G., Vanderborght, B., & Lefeber, D. (2016). Series and parallel elastic actuation: Impact of natural dynamics on power and energy consumption. Mechanism and Machine Theory, 102, 232-246.
  • Beckerle, P., Verstraten, T., Mathijssen, G., Furnémont, R., Vanderborght, B., & Lefeber, D. (2016). Series and parallel elastic actuation: Influence of operating positions on design and control. IEEE/ASME Transactions on Mechatronics, 22(1), 521-529.
Lehrstuhl für Autonome Systeme und Mechatronik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Paul-Gordan-Strasse 3/5
91052 Erlangen
  • Legal notice
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • RSS Feed
  • Twitter
  • Twitter
  • Xing
  • Xing
  • Facebook
Up